欢迎访问我的博客,有问题可以在任意文章底部留言评论

GA4面临无法自动过滤的新型虚假流量(新加坡和中国)

Google Analytics 4 Haran 3个月前 (10-13) 952次浏览 0个评论

更新时间:2025年12月3日

问题

9月份中下旬开始,不少WordPress网站的Google Analytics 4(GA4)有很多来新加坡和中国的流量,如:GA4面临无法自动过滤的新型虚假流量(新加坡和中国)

原因

经过排查,这并非流量的自然增长,而是一场大规模的虚假流量袭击。这些流量主要来自中国和新加坡,其行为模式高度一致,呈现出典型的机器人特征 。

谷歌方面已确认,这是一种新型的机器人流量模式,GA4现有的标准过滤系统无法自动识别和过滤它们。
有人猜测,这些机器人活动可能与大语言模型(LLM)的数据抓取有关,旨在收集网络内容用于AI训练,这解释了其庞大的规模和持续性 。

 

解决方案

GA4里机器流量,没有被GA4内置的IAB/ABC国际爬虫与机器人流量列表规则过滤掉,说明这是新出现的。

处理方式是,在看报告的时候使用过滤器或细分将这部分机器流量排除,延伸阅读:「Google Analytics 4」垃圾流量的识别与处理,但这种方式肯定会误伤部分正常流量。

另一种方式是使用reCAPTCHA去识别机器流量,然后还是使用过滤器或细分将这部分机器流量排除,延伸阅读:在Google Analytics中用reCAPTCHA识别机器流量

以下是Google团队给出的方案:

1. Understanding the increase in inauthentic traffic
The recent, sudden spikes in traffic are likely due to a new, targeted form of inauthentic, non-human traffic (bots) that is currently bypassing our standard filtering systems.
These spikes are correlated with low-quality session metrics, specifically:
  • Extremely low engagement: Sessions with only initial events (session_start, page_view) and no further user interaction.
  • Anomalous data: Unusual concentrations of traffic from older device/OS profiles, or sudden spikes from unexpected countries/cities, often labeled as (not set).
While our concerned team has confirmed the issue, and we already filter self-identifying bots, they are actively working to improve our protection capabilities to ensure you receive the most accurate data.
2. Immediate action: viewing data without spam
The recommended immediate step is to create Segments in Explore reports. This action only affects how you view the data and ensures no valid traffic is permanently excluded.
The process:
  • Identify the spam pattern: Use the explore section and post-processed dimensions (like geographic info) to find the “fingerprint” of the spam. Look for patterns such as:
    • High traffic from a specific country/city paired with extremely low engagement (e.g., Session Duration < 10 seconds).
    • Unusual concentrations of specific technical profiles or violations of event logic.
  • Create an exclusion segment: Build a user or session segment in the explore builder with the necessary conditions (e.g., exclude sessions where country = ‘Singapore’ and session duration < 10).
  • Apply to reports: Apply this exclusion segment to any exploration report you use for analysis to immediately view your clean data.
While we develop an immediate workaround, we want to assure you that we are tackling the root cause. We are actively addressing gaps in our bot traffic filtering that are skewing data and inflating GA360 billing. A long-term spam detection fix is in development.
喜欢 (2)
发表我的评论
取消评论
表情 贴图 加粗 删除线 居中 斜体 签到

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址